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Abstract (not a vugraph) 

A new iterative inverse method for gama-ray transport problems is 
presented. The method, based on a novel application of the Schwinger 
variational functional, is developed as a perturbation problem in which the 
current model (in the iterative process) is considered the initial, unperturbed 
system, and the actual model is considered the perturbed system. The new 
method requires the solution of a set of uncoupled one-group forward and 
adjoint transport equations in each iteration. Four inverse problems are 
considered: determination of 1) interface locations in a multilayer 
sourcehhield system; 2) the isotopic composition of an unknown source 
(including inert elements); 3) interface locations and the source composition 
simultaneously; and 4) the composition of an unknown layer in the shield. 
Only the first two problems were actually solved in numerical one- 
dimensional (spherical) test cases. The method worked well for the unknown 
interface location problem and extremely well for the unknown source 
composition problem. Convergence of the method was heavily dependent on 
the initial guess. 

This talk accompanies a full paper of the same title, LA-UR-02-637 1. 
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Motivation 

A direct solution to the Boltzmann transport equation for a known 
system results in the particle angular or scalar flux somewhere or everywhere 
in the system, depending on the solution method. 

However, the real problem is frequently the inverse: Given the angular 
flux or some hnctional of it (e.g., the particle flux at a detector), what is the 
system? 

Shield and source interfaces 
(?> 

The inverse problem considered here is the determination of 

+ 
+ 
+ 
+ 

interface locations in a multi-layer sourcehhield system, 
the isotopic composition of an unknown source, 
interface locations and source composition, or 
the composition of an unknown layer in a shield, 

given a set of observed gamma ray fluxes of specific, discrete energies 
characteristic of the source isotopes. 

observed lines. 
The number of unknowns should be less than or equal to the number of 
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Notation 

source emits g a m a  rays at discrete energies, which can be resolved quite 
well using a high-purity germanium detector. Thus we consider only the 
transport of photons of discrete energies and assume that any scattered 
photons lose energy and are removed. The angular flux of photons at the 
discrete energy denoted by index,g is given by 

fi - 9 l y g  ( r ,  fi) + C: ( r > l y g  ( r ,  fi) = q g  ( r )  
for g = 1,. . ., G. 

Consider a system that includes some source of gamma rays. The 

The adjoint equation is 
- fi V ly * g  ( r  ,a> + c : (r>ly *g  ( r  ,fi> = q * g  ( r  

where the source is to be determined (it will turn out to be the detector 
response function, as usual). 

, 

and 

These equations can be rendered in operator notation as 
L l y  g g  = q g  

L,*gly*g = q * s  

The quantity of interest is 
Suppose the scalar flux for each energy line g is measured at a detector. 

where the detector response fimction C: ( r )  is defined as 
1 ,  
0 ,  . otherwise 

r within the detector volume 
cz ( r )  = { 

Introducing the inner product notation (e)  to mean an integral over all phase 
space (volume and angle), the quantity of interest is 

A weight function or detector efficiency can be built into C: ( r )  . 

M g = ( C : y g )  . (7) 
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The Schwinger functional 

A variational functional for M g  is the Schwinger functional' 

( c % g ) ( v * g q g )  

(w*gLgwg) 
M , g [ W * g , W g l  = 

The variation of M: with respect to w*g is 

which is zero for arbitrary and independent variations S W * ~  when w g  
satisfies Eq. (1). 

The variation of M ;  with respect to lyg is 

which is zero for arbitrary and independent variations 6wg when ty*g 
satisfies 

[as usual, the adjoint source of Eq. (2) is identified as the detector response 
function]. 

L*gry*g (1 1) 

satisfy Eqs. (3) and (1 l), respectively, and the stationary value is 
In other words, MVg is stationary about the functions wg and w*g that 

M g  = ( c : w g ) .  

Weston M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, Inc., New York, New York, Chap. 13 (2001). 1 
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The Schwinger functional for the perturbed problem 

describing the perturbed system are 

and 

Suppose the system is perturbed in some way. Then the equations 

LtgWrg = qrg 

L P g y ' * g  = 2; 
9 

and the quantity of interest becomes 

= ( C ; y ' g )  . (14) 

A direct estimate of M r g  using the initial, unperturbed flux yg  instead 

of the perturbed flux ytg would be accurate only to first order with respect to 
the difference A yg = ytg - yg  . 

The Schwinger hnctional for is 

Eqs. (12) and (13), respectively, and the stationary value is W g  = ( C ; W ' ~ ) .  

MLg is stationary about the functions y fg  and that satisfy 

perturbed functions yrg and 
the perturbed quantity 

Using the initial, unperturbed functions y g  and ylg instead of the 
in Mig of Eq. (1 5 )  yields an estimate of 

that is accurate to second order with respect to 
the differences Ayg = ytg - yg and = y'*g - y*g  
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Standard application of the Schwinger functional 

known exactly, but a reasonable guess is available 
Suppose that the configuration of the shielding in the problem is not 

+ 
not known exactly 

That is, the locations of some of the interfaces in the system are 

In this case, the guess corresponds to the unperturbed configuration 
with transport operator Lg and source qg and the actual system corresponds 
to the perturbed configuration with transport operator Ltg and source q’g. 

known. 
The forward and adjoint angular fluxes for the guess, wg and wig, are 

wg and w*g in 
If L’g and q‘g were known, then they could be used with trial functions 

( %wg)( w*gq’g) 

[Eq. (1 5 ) ]  to yield an estimate of the flux at the detector that is accurate to 
second order with respect to the differences A lyg and A 
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Novel application of the Schwinger functional for inverse problems 

known (i.e., the gamma flux for each line has been measured). 
Suppose that MIg ,  the quantity of interest for the physical system, is 

estimates of Zg and qrg that describe the physical system. 
Then Eq. (1 5 )  can be used with wg and wig for the guess to arrive at 

+ 
functions wg and w*g for a model to iteratively improve the model. 

In other words, Eq. (15) can be used with a known Mig and trial 

0 

and 

0 

Let the symbol Mf represent the measured value and note that 
L'g = Lg + m g  

= Lg +AX: (16) 

Using the measured value for trial functions wg and t,u*g for w r g  
and w ' * ~ ,  and Eqs. (1 6) and (1 7), Eq. (15) becomes 

(X f w .)[( w *g 4 g ,  + (w *g A4 )I 
M,g = 

( ~ * g ~ g v g )  + ( Y * g ~ c ; y p )  

Rearranging yields 

measured detector flux of line g and that computed using the assumed 
(unperturbed) model. 

The right side of Eq. (1 9) is the relative difference between the 

0 AX: and A q g ,  or the integrals containing them, are unknown 
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Application: Identification of unknown interface locations 

The cross-section integral in Eq. (1 9) becomes 

0 
Detector 

+ r' n dV I dhy*gAC&+ygH(r,' - r,) I '  
where N is the number of boundaries. 

0 Define 
ACEn E = -AXg t ,n- * 

boundary r n- or rn+, Eq. (20) yields 
Using ACg t,n and identifying r,' as the location of the perturbed 

n=l - 
The same can be done for the source integral in Eq. (1 9): 

NS 
( y*gAqg)  = c Aqf f dV I d h y * g  

n=l - 
Let the index n be over unknown interface locations only 
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Application: Shield boundary identification (cont.) 

M g  -M,g 

M: 
, g=1, ..., G 

1 
e 

[Eq. (19)] becomes 

There are G equations and G x N unknowns If (r;) and I*g (r;) . We must 
rewrite Eq. (24) for the unknown r,' directly. 

s ,n 

Expand If (r,') and I:,: (Y;) each in a Taylor series about r,, : 

neglecting the second- and higher-order terms, and using the result in 
Eq. (24) yields 

Noting that the zero'th order term in each expansion is identically zero, 

where - - R i s a G x  Nmatrix, _P i s a G x  1 vector,and & i s a n N x  1 
vector. 

Equation (26) can be recast as a matrix equation: 

(27) -- RAr=_P - 

Equation (27) can be solved as long as the number of unknown 
boundaries, N, is less than or equal to the number of observed lines, G. The 
shape of the unknown boundaries must be known, although they needn't be 
analytic surfaces . 
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Application: Identification of unknown source composition 

0 

0 

and 

0 

0 

Let there be only one homogeneous and isotopic source region 

The integrals in Eq. (19) are 

(I+Y*~AEYV') = L d V  J' d f l y  *g I+Y g 

( y*gAqg)  = Aqg L d V  J' dflI+Y*g 
? 

Equation (1 9) becomes 
M g  -M:  

- - 

M: 

1 

( v * g q g )  

Write AXEs and Aqg in terms of the source weight fractions. Eq. (30) 

Equation (3 1) can be recast as a matrix equation: 

where - - F is a G x Jmatrix, _P is a G x 1 vector, and Af is an J x 1 
vector. 

- 

fractions, J ,  is less than or equal to the number of observed lines, G. 
Equation (32) can be solved as long as the number of unknown weight 

fractions of source isotopes and inert elements (such as stable oxygen) 
Note especially that this method can be used to find the weight 
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Two other applications 

0 Identification of unknown interface locations and unknown source 
. .  composition: 

Identification of unknown layers in the shield: 
Mg-MM,g 

+CC&,I;  , g=1, ..., G . 
n=l MM,g n=l 

(34) 

+ Thus, Eq. (34) 
is not solvable unless there is only one unknown material in the shield, 
in which case: 

There are G equations and G x Nunknowns 

+ These equations are uncoupled 

+ 
be achieved using photon cross section tables when the Zi,? have been 
determined. 

Identification of the composition of the unknown shield layer may 
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Implementation 

follows: 
The general algorithm for implementation of the new method is as 

1. Use available data to generate an initial model. The model has either a 
few unknown interface locations in the source and/or shield, or a few 
unknown isotopic weight fractions in the source, or unknown interface 
locations and unknown source isotopic weight fractions, or one unknown 
layer in a multilayer shield. 

2. Compute the angular flux w g  and the detector response M for each line 
for the model. If the differences between M g  and the measured values 
Mf are large, go to step 3. If the differences are acceptably small, go to 
step 6. 

3. Compute ly*g and construct the left side of Eq. (19) as developed in this 
talk. Construct the right side of Eq. (1 9) using the computed and 
measured detector responses. 

4. Solve for the change in the interface locations Ar, or for the change in the 
source isotopic weight fractions Af, or for - Ar and Af, or for the shield 
layer cross sections Xi:. Update the radii and/or weight fraction vectors. 

return to step 2. 

- - 

5.  Using the new values from step 4, construct an updated operator Lg and 

6. Done. 

The one-group forward and adjoint transport calculations can be 
performed with wither deterministic or Monte Carlo methods. Photon cross 
sections can be constructed from the continuous-energy MCNP library 
MCPLIB02 

The method was implemented to solve the unknown interface location 
problem and the unknown source composition problem in one-dimensional 
(spherical) geometry 

Problem of nonphysical results. 
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Test cases 

Isotope 
2 3 5 u  

Test cases used a spherical Godiva model (94.73% 235U and 5.27% 
238U, mass density of 18.74 g/cm3) in a lead/aluminum shield and a 6%- 
enriched U02 (mass density 10.5 g/cm3) nuclear reactor he1 model in the 
same shield 

Line Energy (keV) Specific Intensity (ylslatom) 
144.0 3.297 x lo6 

8.741 

Uranium gamma lines: 

1001.0 2 3 8 ~  

Void 

4.033 x lo4 

Lead A1 ‘num 

~ 

12.4 12.9 13.2cm 

23517 

238u  
186.0 
766.0 

1.728 x lo7 
1.525 x lo4 

0 

adjoint transport calculations. & gamma transport was used. 
The discrete-ordinates code PARTISN was used for the forward and 

0 “Measurements” were obtained with & calculations 
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Test cases: Unknown interface locations 

Descriptor 

Results for Unknown Interface Test Problemsa 

Outer Radii” 
Model Godiva Void Lead Aluminum 

Actual Model 
Case l a  Initial 

Case l b  Initial 

Case IC Initial 

Case 2a Initial 

Case 2b Initial 

Case 3a Initial 

Case 3b Initial 

Converged 

Converged 

Converged 

Converged 

Converged 

“Converged” 

Converged 

Convergence is sensitive to the initial model. 

8.7410 12.4000 12.9000 13.2000 
8.741 12.1 12.6 12.9 
8.741 12.3856 12.8856 13.1836 
8.741 12.7 13.2 13.5 
8.741 12.3916 12.8916 13.1902 
8.741 14.4 14.9 15.2 

Did Not Converge 
8.741 I 12.3 12.6 15.0 

Did Not Converge 
8.741 12.0 12.6 15.0 
8.741 12.3916 12.8916 13.1902 
9.0 12.0 12.6 13.2 
9.0 12.1066 12.6 13.2 
9.0 12.1066 12.6 13.2 

8.7619 12.3893 12.8891 13.2 
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Iterations for unknown interface location test cases 

.. 
x 

0 Iterations for case lb: 
13.6 1 I_ 10.0% 

-- 9.0% 

-- 8.0% 

m 
-- 6.0% - 

al 
-- 5.0% 

P Pb outer radius 
f 
C -- 3.0% 'L 
2 
hi -- 2.0% 

-- 1.0% -. F -  -.. 
-)(- - - . - - 12.4 ---- .I. - 

12.3 - 

12.2 -1 .O% 
0 1 2 3 4 5 6 7 

Iteration 

0 Iterations for case IC: 

20.2 

19.2 

18.2 

15.2 

14.2 

20% 

10% 

>, 
-20% + 

f 

z 
T- 

S 

-30% .: 
W 

-40% 
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Test cases: Unknown source composition 

0.166666 
0.786633 

e 

0.166666 
0.1 13696 

Results for Unknown Source Composition Test Problems 

Descriptor 
Case 4 

Case 5 

Case 6 
6a 

6b 

Model 
Actual 
Initial 

Converged 
Actual 
Initial 

Converged 
Actual 
Initial 

Converged 
Initial 

Converged 

sou 
2 3 5 u  

0.947300 
0.1 

0.947279 
0.0528860 
0.3333333 
0.0528629 
0.0502420 

0.25 

:e Material Weight Fractions 
23 8u 

0.0527000 
0.9 

0.0527214 
0.828 544 
0.333333 
0.8285 11 
0.787 1 17 

0.25 
Did Not Converge 

0.50 
0.0502345 

0 

0.1 18570 
0.333333 
0.1 18626 
0.112641 

0.25 

Gd 

0.0500000 
0.25 

0.1666666 
0.04943 63 

Convergence is sensitive to the initial model. 

Convergence in these problems is very fast: one or two iterations 
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Summary and conclusions 

been presented. 
A new iterative inverse method for gamma-ray transport problems has 

The method, based on a novel application of the Schwinger variational 
functional, is developed as a perturbation problem in which the current 
model (in the iterative process) is considered the initial, unperturbed system, 
and the actual model is considered the perturbed system. 

and extremely well for the unknown source composition problem. 
The method worked well for the unknown interface location problem 

Convergence of the method was heavily dependent on the initial guess. 

Future work: Incorporate constraints into the variational formalism 

+ 
negative interface locations or weight fractions would be of great 
benefit. 

Constraints that would exclude nonphysical solutions such as 

+ It would also be helpful to develop constraints that would directly 
incorporate knowledge of the system beyond simply whether an 
interface location or source weight fraction is known or unknown. For 
example, the known mass or thickness of a shield layer cannot 
presently be used in the inverse method to update the unknown 
parameters . 

Carlo transport calculations 
Future work: Implement the method with continuous-energy Monte 

Future work: Actual measurements (or Monte Carlo simulations) 

Los Alamos National Laboratov, X-5 16 of 16 


